Secondary Structure Prediction of proteins causing Diabetic Foot Ulcers using Artificial Neural Networks
نویسندگان
چکیده
The main aim is Secondary Structure Prediction of proteins causing Diabetic Foot Ulcers using Artificial Neural Networks.Protein structure prediction is one of the most important goals pursued by bioinformatics. The knowledge or prediction of secondary structure improves detection and alignment of remote homologs and helps for drug design. The purpose of this study is to identify the Secondary Structure of proteins causing foot problems in patients with diabetes, which is a major public health concern these days. The most feared factor among the diabetic patients is lower extremity amputation. The sequence of events leading to amputation is initiated by ulceration combined with sensation loss. To prevent complications and amputations it is necessary to detect the foot at risk of plantar ulceration at an early stage of sensation loss. To access the severity of foot ulcer, here Artificial Neural Networks is used to predict the secondary structure of proteins like P14780, P01137, P01912, P18462, P30499. By using this method the recognition of risk factors will be analyzed in efficient manner. Based on the severity of foot ulcer, preventive foot maintenance and regular foot examinations will take place in diabetes patients.to an early diagnosis and treatment against diabetic foot.
منابع مشابه
Prediction of Kinematic Viscosity of Petroleum Fractions Using Artificial Neural Networks
In this work, artificial neural network (ANN) was utilized to develop a new model for the prediction of the kinematic viscosity of petroleum fractions. This model was generated as a function of temperature (T), normal boiling point temperature (Tb), and specific gravity (S). In order to develop the new model, different architectures of feed-forward type were examined. Finally, the optimum struc...
متن کاملProduct Yields Prediction of Tehran Refinery Hydrocracking Unit Using Artificial Neural Networks
متن کامل
Prediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کامل